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The pursuit of algorithmic fairness: On “Correcting” algorithmic unfairness 
in a child welfare reunification success classifier 

Jordan Purdy *, Brian Glass 
Office of Reporting Research Analytics and Implementation, Oregon Department of Human Services, United States  

A B S T R A C T   

The algorithmic fairness of predictive analytic tools in the public sector has increasingly become a topic of rigorous exploration. While instruments pertaining to 
criminal recidivism and academic admissions, for example, have garnered much attention, the predictive instruments of Child Welfare jurisdictions have received 
considerably less attention. This is in part because comparatively few such instruments exist and because even fewer have been scrutinized through the lens of 
algorithmic fairness. In this work, we address both gaps. First, a novel classification algorithm for predicting reunification success within Oregon Child Welfare is 
presented. The purpose of this tool is to maximize the number of stable reunifications and identify potentially unstable reunifications which may require additional 
resources and scrutiny. Additionally, because the algorithmic fairness of the developed tool, if left unaltered, is unquestionably lacking, the utilized procedure for 
mitigating such unfairness is presented, along with the nuanced rationale behind each complex and unavoidable choice. This procedure, though similar to other post- 
processing group-specific thresholding methods, is novel in its use of a penalized optimizer and contextually requisite subsampling. These novel methodological 
components yield a rich and informative empirical understanding of the trade-off continuum between fairness and accuracy. As the developed procedure is 
generalizable across a variety of group-level definitions of algorithmic fairness, as well as across an arbitrary number of protected attribute levels and risk thresholds, 
this approach presents the opportunity to critically and broadly influence the equity and fairness implications of a Child Welfare jurisdiction’s automated decision 
processes.   

1. Introduction 

The Child Welfare division of the Oregon Department of Human 
Services operates under a mission to “strengthen, preserve, and reunify 
families” (Oregon Department of Human Services, 2015), as well as a 
mission to “adapt services and policy to eliminate discrimination and 
disparities in the delivery of human services” (Oregon Department of 
Human Services, 2014). In order to advance both principles in practice, 
we present a novel methodology which identifies children in custody of 
the state who are candidates for stable reunification with their family, 
and which “corrects” algorithmic unfairness in the corresponding 
automated classification process. The intended implementation of this 
process is in the form of a decision support tool for staff who make 
permanency-related decisions in Child Welfare. 

The purpose of such a decision support tool is to advance the mission 
to safely reunify children with their families by identifying the proba
bility of a failed reunification. Currently, of children who have been 
removed from home and placed in substitute care for at least 90 days, 
only 36% will reunify with their family within one year. However, 83% 
of reunifications remain stable for at least one year. Taken together, we 
seek to develop a classification procedure to ascertain the probability of 

a stable reunification in order to (1) maximize the amount and success 
rate of reunifications, and (2) identify high risk reunifications which 
may benefit from supportive services and resources (Table 1). 

The overall reunification rate is the result of a variety of competing 
factors such as policy and practice models (Ainsworth & Maluccio, 
1998), social worker decision making (Biehal, Sinclair, & Wade, 2015), 
jurisdiction resources (Esposito et al., 2017), and parent/child charac
teristics and behavior (Biehal, 2007; Terling, 1999). In this way, deci
sion support tools face systemic challenges beyond algorithmic 
performance and fairness (Keddell, 2019). However, the methodology 
presented here represents a general child-level predictive risk analysis. 
The output of such an analysis has a variety of potential applications, 
from a system-wide evaluation of a jurisdiction’s reunification practice, 
to informing targeted service or resource initiatives, to real-time indi
vidual-level decision support tools. The correction process detailed here 
is not limited to decision support tools, but rather represents a general 
process for addressing algorithmic bias in individual-level predictive 
risk assessment. 

The construction of the proposed equitable classifier involves two 
stages, resulting in the assessment of an individual child’s prospects for a 
stable reunification along an ordinal risk tier scoring system. First, a 
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binary classifier is constructed using statistical machine learning. Such a 
classifier, as far as we are aware, is the first of its kind in Child Welfare at 
large. Second, because such a classifier may suffer from myriad forms of 
bias, we administer a post-processing fairness correction. This procedure 
adjusts the binary classification threshold dependent on the child’s level 
of their protected attribute (e.g., demographic group membership). By 
combining multiple binary classification thresholds, a multi-tiered 
ordinal scoring system can be constructed. Here, a four-score system is 
developed using three thresholds. 

As child welfare agencies continue to turn to predictive risk modeling 
to support human decision making, there are many overarching issues 
these agencies must consider. The present work considers a method for 
addressing the algorithmic bias generated or perpetuated by such 
modeling, and not a general discussion of the benefits or detriments of 
predictive risk modeling in the first place (Drake, Jonson-Reid, Ocampo, 
Morrison, & Dvalishvili, 2020). Once deployed, these automated algo
rithms may impact every child coming into contact with a jurisdiction’s 
child welfare agency, and at multiple time points through a child’s 
developmental process. For this reason, the statistical mechanisms pre
sented in this article have the opportunity for critical and widespread 
influence of the equity and fairness implications of a jurisdiction’s de
cision process. 

1.1. Making space for algorithmic fairness 

Machine learning classifiers have become widespread in the private 
sector (Einav & Levin, 2014) and their use is expanding in the public 
domain (Oswald, 2018). There exist serious and well founded concerns 
over the inherent unfairness or bias in these algorithms. Unfairness may 
be introduced into machine learning classifiers from multiple sources: 
externally from the historical decision-making processes which gener
ated the training data, or internally from statistical artifacts themselves 
(Veale, Van Kleek, & Binns, 2018). 

In an effort to address these concerns, two approaches are not un
commonly suggested:  

1. Remove the protected attribute from the feature set during algorithm 
training.  

2. Verify the protected attribute is not statistically significant in the 
model. 

Such methods are ultimately misguided conceptions of what con
stitutes algorithmic fairness within a binary classification task. Both are 
akin to a “fairness through unawareness” approach, but both ultimately 
fail to acknowledge the likely relationships that exist between the pro
tected attribute and the other features accessible to the algorithm. Berk 
et. al. phrase it this way: “Even when direct indicators of protected group 
membership, such as race and gender, are not included as predictors, 
associations between these measures and legitimate predictors can 

“bake in” unfairness” (Berk, Heidari, Jabbari, Kearns, & Roth, 2017, pg. 
2). Hardt et. al., referencing (Pedreshi, Ruggieri, & Turini, 2008), 
convey it this way: ”…this idea of ’fairness through unawareness’ is 
ineffective due to the existence of redundant encodings, [or] ways of 
predicting protected attributes from other features” (Hardt, Price, & 
Srebro, 2016, pg. 1). In particular, the first conception problematically 
has not removed from the feature set any proxies for the protected 
attribute, while the second has problematically only verified that the 
protected attribute is not significant after accounting for the effects of all 
other variables in the model. Hence, algorithmic fairness is not achieved 
by either (only) removing the protected attribute from the feature set or 
by only “verifying” its lack of statistical significance. 

In this work we present and utilize a post-processing fairness 
correction technique which seeks to address unfairness of the final 
automated classifier, regardless of the initial sources of the unfairness. 
This procedure, though similar to other post-processing group-specific 
thresholding methods, is novel in its unexpected use of a penalized 
optimizer, its contextually necessary use of subsampling, and its 
generalizability across any of nine group-level definitions of algorithmic 
fairness. Through such novelty, the procedure yields a rich and infor
mative empirical understanding of the trade-off continuum between 
fairness and accuracy. Given that the procedure can also accommodate 
an arbitrary number of protected attribute levels and an arbitrary 
number of risk thresholds, the approach is broadly applicable both 
within and beyond Child Welfare. 

This proactive approach to mitigating a lack of algorithmic fairness 
represents a substantial departure from the current norm among the 
growing number of Child Welfare jurisdictions developing and deploy
ing predictive risk tools; see Samant, Horowitz, Xu, and Beiers (2021) for 
a comprehensive detailing of all such jurisdictions. Excluding Oregon 
(Office of Reporting Research Analytics & Implementation, 2019; Purdy, 
Glass, & Pakseresht, 2018), the current “standard” is either to essentially 
ignore algorithmic fairness altogether or to perform an assessment-only 
audit (e.g., Chouldechova, Putnam-Hornstein, Benavides-Prado, Fialko, 
& Vaithianathan (2018b)). In fact, the only application of a fairness 
correction procedure to a predictive analytic tool in Child Welfare, apart 
from the tools developed by ORRAI, is academic and illustrative in na
ture (i.e., Coston, Mishler, Kennedy, & Chouldechova, 2020), similar to 
the number of academic papers pertaining to predictive policing and 
criminal recidivism (e.g., Canetti et al., 2019; Ensign, Friedler, Neville, 
Scheidegger, & Venkatasubramanian, 2018) that can be linked to Ang
win, Larson, Mattu, and Kirchner (2016). This de facto state of affairs in 
Child Welfare is undoubtedly attributable, in no small part, to the un
certainty surrounding how “best” to proceed. 

To address this uncertainty, we provide the rationale behind each 
critical decision embedded in the procedural methodology. We hope 
such transparency serves as a “map” for other jurisdictions to follow and, 
where appropriate, deviate from accordingly. In the case of the reuni
fication algorithm, critical decisions were necessarily informed and 
influenced by the stakeholders comprising the algorithm’s work group, 
in accordance with their knowledge of and desire for Child Welfare 
within the state of Oregon. Listed in alphabetical order, this work group 
consisted of the following staff and representatives: business analysts, 
Child Protective Services (CPS) supervisors, CPS workers, child safety 
manager, Child Welfare (CW) alcohol and drug specialist, CW district 
managers, CW field leadership, CW leadership, current and former foster 
youth, current and former foster parents, data coordinator, Indian Child 
Welfare Act representative from Tribal Unit, lead inter-agency 
researcher, Mentoring Assisting Promoting Success (MAPS) worker, 
Morison Child and Family Services, Office of Equity and Multicultural 
Services, Office of Information Services, ORRAI reporting analysts, 
Oregon Department of Justice, paralegals, permanency consultant, 
permanency program manager, permanency supervisors, permanency 
workers, program managers, program systems support, reunification 
manager, safety consultant, supervisor, and teen supervisor. Ultimately, 
the presented procedure can and surely will be improved upon over 

Table 1 
Calibration table for risk score outcomes and proportions for two groups: (1) 
children who leave substitute care to reunify with their parents, and (2) children 
who have not yet reunified with their parents at 90 days from entry into sub
stitute care.  

Score Reunifications In Care at 90 Days 

% 
GivenScore 

% Failed 
Reunification 

% 
GivenScore 

% Eventually Reunify 

w/in 1 
Year 

Ever w/in 1 
Year 

w/in 1 
Year, then 

Fail 

S4 8% 52% 60% 8% 31% 30% 
S3 26% 25% 35% 31% 33% 22% 
S2 34% 12% 21% 35% 35% 14% 
S1 32% 7% 14% 26% 40% 10% 

Overall 100% 17% 25% 100% 36% 16%  
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time, but we hope that it serves as a new “standard” for those Child 
Welfare jurisdictions seeking to proactively address algorithmic 
fairness. 

1.2. Structure of paper 

In Section 2, details of the algorithm, including its development and 
application, are provided. In Section 3, the identified protected attri
bute, the chosen definition of algorithmic fairness, and the developed 
methodology for fairness “correcting” are described. The results of the 
fairness correction procedure, when applied to the reunification algo
rithm, are detailed in Section 4. The paper concludes in Section 5 with a 
discussion of opportunities for future exploration. To broadly encourage 
the incorporation of algorithmic fairness into Child Welfare decision 
support systems, and to freely provide a means of mitigating a lack of 
algorithm fairness in such systems, the R code for the developed fairness 
correction procedure is posted on GitHub (https://github.com/JPurdy- 
ORRAI/ORRAI_AlgFairnessCorrectionDemo), along with an illustrative 
R script applying the procedure to the Adult Data Set from the UCI 
Machine Learning Repository (Dheeru & Karra Taniskidou, 2017). 

2. Predicting reunification success 

2.1. Data sources, variables, and outcome 

The primary data source was an administrative data set queried from 
the state of Oregon’s Child Welfare data system. The data system is 
compliant to the U.S. Children’s Bureau’s requirements for a Statewide 
Automated Child Welfare Information System (SACWIS) (DHHS, 2016). 

The general unit of observation was a child’s transition from one 
placement setting to another (i.e., a child-transition pair). The machine 
learning training set consisted of only child-reunification pairs, defined 
as the child-transition pairs representing a return of the child from a 
substitute care setting to a home setting with the child’s parents. These 
reunification observations consisted of both “trial visits” (i.e., temporary 
reunifications during which the child remains in state custody) and full 
reunifications (i.e., discharge from state custody, with or without 
ongoing government provided support services). The data set queried 
from this data source represented child welfare administrative data from 
August 2011 to January 2020. 

The outcome of interest was whether a child’s potential reunification 
with their family will be stable. To quantitatively define this outcome 
(Passi & Barocas, 2019), the binary dependent variable was deemed 
“true” if the child remained at home for a period of one year, and “false” 
if the child returned to substitute care for at least 14 days during the 
ensuing one-year period after returning home. Most children who have 
experienced at least one reunification event have experienced multiple 
(25thpercentile = 1, M = 2.7, 75thpercentile = 3). After stochastically 
unduplicating by child (i.e., choosing one reunification event per child), 
the overall outcome prevalence for a reunification failure was 17%. 

The independent variables (i.e., the machine learning feature set), 
were constructed from data elements which would have been tempo
rally available on the day before a child-reunification pair occurred. In 
this way, temporal leakage was prevented by ensuring the machine 
learning classifier could not “peek” at information about the child’s new 
setting nor about the child’s future administrative data pattern. Features 
were only constructed using timestamped data elements with consistent 
data entry availability throughout the life of the SACWIS system. The 
features were constructed using information regarding prior: service 
placements in substitute care, home-based government provided child 
welfare service involvement, reports of abuse/neglect, and CPS in
vestigations. The features convey information related not only to the 
child, but also the child’s parents and the perpetrator listed on the 
child’s most recent CPS investigation. The complete list of features is 
available in Table 9 in Appendix D. 

2.2. From machine learning classifier to decision support tool 

Careful procedural protocols are required to avoid introducing arti
facts via the modeling procedure itself. These “modeling pitfalls” include 
the selective label problem, repeated observation or temporal leakage, 
data volume as predictor, shrinking outcome windows, and inappro
priate performance metrics. Each are discussed in Appendix A. 

A machine learning classifier is trained to predict the outcome with 
the available child-reunification-level feature set. The classifier was 
trained using gradient-boosted decision trees via the XGBoost algorithm 
(Chen, He, Benesty, Khotilovich, & Tang, 2015). Because SACWIS sys
tem data are not conducive to exploring or understanding the causal 
mechanisms underlying reunification failure or success, we used a de
cision tree classifier to maximize predictive performance through the 
leveraging of complex interactions between variables (Breiman, 2001). 
The classifier training procedure involves an exhaustive resampling 
approach to ensure different events involving the same child do not 
appear in both the training and test data sets. The procedure yields an 
independent test-set-predicted-probability of reunification stability for 
each child-reunification observation in the complete set (see: Appendix 
A.2). 

To conform to the design and implementation specifications of 
Oregon’s Child Welfare governance, the classifier’s output was adapted 
for use as a decision support tool. To accomplish this, three risk 
thresholds were selected to represent usable and meaningful risk tiers 
for practitioners, resulting in four ordinal risk score tiers. To facilitate 
intuitive understanding among tool users, the threshold (prior to 
applying the fairness-correction procedure) separating scores of S1 and 
S2 from scores of S3 and S4 is the average predicted probability 
outputted by the algorithm. This enables staff using the tool to quickly 
identify children with scores of S1 and S2 as having less than the 
“typical” (i.e., average) risk of a failed reunification, and children with 
scores of S3 and S4 as having more than the “typical” (i.e., average) risk. 
The threshold separating a score of S1 from higher scores is the median 
of the predicted probabilities less than the average predicted probabil
ity. This provides staff with two equal-sized “bins” in which scores of S1 
convey approximately half the risk of scores of S2. The threshold sepa
rating a score of S4 from lower scores represents the 75th-percentile of 
predicted probabilities greater than the average predicted probability. 
This choice simultaneously limits the proportion of child-reunification 
pairs receiving a score of S4 and maintains an approximate doubling 
of risk with each subsequent increase in risk score. These thresholds are 
labeled low-, average-, and high-risk, while the corresponding four risk 
score tiers are denoted S1, S2, S3, and S4, where, for example, the low- 
risk threshold separates risk scores of S1 from risk scores of S2, S3, and 
S4. Such coarse grained risk tier information seeks to reduce the intro
duction of bias via variable and uncontrollable decision thresholds 
which can vary between human decision makers (Chouldechova, 
Benavides-Prado, Fialko, & Vaithianathan, 2018a; Green & Chen, 2019). 
Finally, an extended data set of observations were constructed to 
consider performance generalization to all child-placement observations 
90 days from initial entry into substitute care (the 90 day mark was 
chosen to mirror the intended implementation protocol for this decision 
support use case). This generalization process was required due to the 
fact that only historical reunificaitons could be directly compared to 
model results. In other words, by definition there are no outcomes 
available for children who did not experience a reunification. Thus, in 
order to assess the implications of the decision support tool, predictive 
performance was tested on a generalized set using proxy outcomes. 

2.3. Predictive performance 

To assess predictive performance, Table 1 reports the model’s pre
dictive characteristics for child-reunification pairs as well as for children 
who remained in substitute care at 90 days after entry. As the classifier 
was trained using child-reunification pairs, the Reunification group 
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represents a direct predictive test of the classifier. Table 1 indicates that 
of the Reunifications with a high-risk score (i.e., S4), 52% resulted in a 
reunification failure (i.e., a return to substitute care). In contrast, of 
those with a low-risk score (i.e., S1), 7% resulted in a failure. The col
umn %Failed Reunification Ever relaxes the outcome window censorship 
to illustrate the robustness of the risk stratification to an open-ended 
outcome. 

The In Care group represents a potential use case of the classifier to 
assess children in substitute care at 90 days from entry. Given the 
impossibility to observe the reunification failure rate for children who 
were not historically reunified, a group of children were considered who 
were In Care and may have eventually reunified. Thus, this In Care 
group is a generalized use of the classifier, in that it represents an 
observation type that is not used in the training of the classifier. Note 
that 36% of the children in the In Care group experience a reunification 
event in the upcoming year. This proportion represents the critical op
portunity to provide a decision support tool to advance the mission to 
reunify children with their families. In particular, from Table 1, it is 
apparent that among the 27% of children who have been in care for 90 
days and would receive a low-risk score (i.e., S1), only 40% will expe
rience an attempted reunification in the next year; whereas, among the 
8% of children who have been in care for 90 days and would receive a 
high-risk score (i.e., S4), a comparatively high 31% will experience an 
attempted reunification in the next year. The lack of clear separation in 
these and the other values of the %Eventually Reunify w/in 1 Year column 
of Table 1 suggest that the diagnosticity of the tool could greatly 
enhance reunification-related decisions in Oregon Child Welfare. 
Moreover, the rightmost column of Table 1 illustrates that the reunifi
cation failure rate of the group of children who did reunify was cali
brated with scoring, indicating that the classifier has the potential to 
provide additional outcome-based insights to those responsible for 
reunification decisions. 

The area under the receiver operating characteristic curve (AUC/ 
ROC) was 0.73. Despite this moderate AUC value, the low historical 
reunification rate coupled with the lack of diagnosticity of the historical 
reunification decisions represents a real opportunity to support human 
decision making in this area. The scores provided in Table 1 are 
generated using the fairness corrected version of the classifier. The 
fairness correction procedure is discussed below. 

3. The algorithmic fairness of the reunification scores 

A general framework for enmeshing algorithmic fairness in a binary 
decision-support tool, both within and beyond Child Welfare, requires 
answering three questions. First, what is the protected attribute across 
which fairness is assessed? Second, what is the definition through which 
fairness is measured? Third and finally, what is the procedure from 
which fairness is increased? 

Before providing and discussing the answers to these three questions 
within the context of the reunification tool, it is important to consider 
who is responsible, in general, for answering these three questions. In 
our opinion, providing answers to the first two questions is the re
sponsibility of the stakeholders of the corresponding decision point. In 
particular, because all available answers yield unavoidable trade-offs 
and because the “best” answers are both use-case- and jurisdiction- 
dependent, the values and worldviews represented in these answers 
should be driven by stakeholders. Providing an answer to the third 
question, in our opinion, is the responsibility of the algorithm- 
development team. In particular, after accounting for the answers pro
vided to the first two questions, the developers are tasked with identi
fying and implementing a procedure that will maximally increase 
fairness, subject to as minimal a decrease in predictive performance as 
the algorithm’s stakeholders are willing to accept. 

3.1. The protected attribute 

In answer to question one, the stakeholders within the reunification 
algorithm work group identified a race and ethnicity-based protected 
attribute. Given that algorithms can perform differently across different 
combinations of protected attributes, as demonstrated in Buolamwini 
and Gebru (2018), a multi-dimensional protected attribute would have 
ideally been constructed with a level for each combination of levels 
across all available protected attributes (i.e., race, ethnicity, ICWA- 
status, and sex). Unfortunately, sample sizes were insufficiently large 
to enable such a multidimensional protected attribute, and the work 
group was forced to make an unavoidable trade-off. The resultant 
feature consists of four levels: Black (BL); Hispanic, Pacific Islander, or 
Asian (HPA); Native American or Indian Child Welfare Act (ICWA)- 
eligible (NV); and White (WH). Importantly, BL and NV child- 
reunification pairs are historically approximately 47% and 39% more 
likely, on average, to experience a failed reunification than HPA child- 
reunification pairs, and historically approximately 20% and 14% more 
likely, on average, to experience the adverse event than WH child- 
reunification pairs. It is this disproportionality in historical decision 
making, along with the ways that it may manifest itself through the 
predictions of the algorithm, that necessitate a specific answer to the 
second question. 

3.2. The definition of algorithmic fairness 

In answer to question two, the stakeholders within the reunification 
algorithm work group identified Error Rate Balance as the definition 
through which to measure fairness. The decision to utilize a group-level 
definition of algorithmic fairness, as opposed to a causal-reasoning 
based or individual-level definition, was pragmatic in nature. In 
particular, given that it is fundamentally “…impossible to test an 
existing classifier against causal definitions of fairness” (Verma & Rubin, 
2018, pg. 6), all causal-reasoning based definitions were sweepingly 
dismissed. Similarly, given that individual-level definitions “…currently 
cannot be operationalized in a useful manner” (Berk et al., 2017, pg. 15), 
and given that the worldview represented through any such definition 
likely has a commensurate analogue within the existing set of oper
ationalizeable group-level definitions (Binns, 2019), individual-level 
definitions were also sweepingly dismissed. 

The decision to use Error Rate Balance from among all available 
group-level definitions, was ultimately rooted in the worldviews it 
represents. From a technical perspective, Error Rate Balance requires, at 
each threshold, that the false positive rate be the same across the levels 
of the protected attribute, as well as the false negative rate. Contextu
ally, this means that given an outcome for a child-reunification pair, be it 
“success” or “failure”, Error Rate Balance requires that the probability of 
a corresponding incorrect prediction label be the same across all levels 
of the protected attribute. More practically, this means Error Rate Bal
ance “…encourages the use of features that allow to directly predict [the 
outcome], but prohibits abusing [the protected attribute] as a proxy for 
[the outcome]” (Hardt et al., 2016, pg. 3). Philosophically then, Error 
Rate Balance “…aims to account for Population Inequity: it strives for 
risk predictions that do not disproportionately harm one group more 
than another, regardless of the underlying distributions of risk” (Green, 
2020, pg. 8). 

This choice of definition, however, does come with a cost. Specif
ically, the proportion of child-reunification pairs within each risk score 
that actually end up experiencing the adverse event will differ across 
protected attribute levels, which can “…have the unintended and highly 
undesirable consequence of incentivizing [tool users] to take [the pro
tected attribute] into account when interpreting predictions” (Pleiss, 
Raghavan, Wu, Kleinberg, & Weinberger, 2017, pg. 1). In fact, the 
choice of any definition comes at the cost of other fairness definitions. 
Collectively, such trade-offs are known as Impossibility Theorems (Berk 
et al., 2017), a number of which have been documented in the literature 
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(Barocas, Hardt, & Narayanan, 2018; Chouldechova, 2017; Ensign et al., 
2018; Kleinberg, Mullainathan, & Raghavan, 2016). Ultimately, such 
costs must be considered and weighed by stakeholders when choosing a 
definition of fairness and then, where possible, effectively addressed and 
managed in training users of the corresponding tool. 

3.3. The procedure for increasing fairness 

In answer to question three, a protected-attribute-level-specific (i.e., 
group-specific) thresholding adjustment procedure was utilized. In the 
context of the reunification algorithm, such an approach means that the 
amount of evidence (i.e., the value of the predicted probability) required 
to elevate the level of risk (e.g., from a score of S2 to S3) for a child- 
reunification pair depends on the level of the protected attribute. 
Furthermore, the “dial” for determining the “appropriate” amount of 
evidence for each protected attribute level is “tuned” according to the 
specified definition of algorithmic fairness, which in this application is 
Error Rate Balance. 

While this procedure attains algorithmically fairer risk scores 
through the same mechanism (i.e., group-specific threshold values) as 
the procedures described in Hardt et al. (2016) and Lipton, Choulde
chova, and McAuley (2019), the optimization process for identifying the 
values for these thresholds is notably different and, to the best of our 
knowledge, novel in its application. This optimization process simulta
neously accounts for the dependence structure embedded in the obser
vational units (i.e., dependent child-reunification pairs), yields an 
empirically derived curve of the trade-off continuum between fairness 
and accuracy, and accommodates any of nine group-level definitions of 
algorithmic fairness. When combined with the fact that this procedure is 
applicable to any feasibly chosen protected attribute, the procedure 
represents an important contribution to the body of literature on algo
rithmic fairness in the predictive risk tools of Child Welfare. 

The decision to utilize such a post-processing procedure, as opposed 
to a pre- or in-processing procedure similar to those described in Berk 
et al. (2017), Bechavod and Ligett (2017), or Zafar, Valera, Rodriguez, 
and Gummadi (2017), was attributable to self-imposed demands for 
transparency, interpretability, and operationalizability. In particular, 
this procedure operates outside of the “black-box” of the algorithm so 
that there is no “mystery” behind the algorithmic fairness process. Such 
transparency allows stakeholders to straightforwardly recognize how 
unfairness is being mitigated. When it comes to interpretability, this 
procedure enables a clear answer to the following question: How much 
did the Error Rate Balance increase, and corresponding predictive per
formance measures change, in transitioning from group-agnostic to 
group-specific values at each threshold? Such interpretability enables 
stakeholders to clearly recognize the impact of the procedure and to 
begin to assess the associated trade-offs available. Finally, with respect 
to operationalizability, this procedure is flexible and transferable across 
use-cases and classifier types, enabling its broad application. 

3.3.1. Clarifying point 
It is worth addressing here a common and instinctive rhetorical 

question to such a process: But is it not unfair to uphold different 
“standards” for different protected attribute levels when assigning risk 
scores? Such a question is, at its core, pushing back against the notion 
that to prevent disparate impact requires disparate treatment, and is in 
fact the motivation behind the in-processing approach proposed in Zafar 
et al. (2017). In reality, however, such approaches seeking to prevent 
disparate impact without disparate treatment (1) fail to optimally pre
vent disparate impact and (2) ultimately do enact disparate treatment 
“…through hidden changes to the learning algorithm” (Lipton et al., 
2019, pg. 16). Hence, such a criticism is not limited to a group-specific 
thresholds approach, but in fact applies to a broad range of fairness 
correction procedures. And in response to this more general criticism, 
we point out that such disparate treatment is in fact enacting a form of 
service equity, a core value of the Oregon Department of Human 

Services. 

3.3.2. Brief overview of the procedure 
The developed procedure ultimately utilizes a penalized optimizer 

within a subsampling loop to obtain the corresponding group-specific 
threshold values. The subsampling component of this procedure en
sures that no two reunifications for the same child are simultaneously 
used in the objective function, which addresses concerns surrounding 
(1) the dependence structure of the observational units, and (2) the 
robustness of fairness-correction procedures to training-test splits 
(Friedler et al., 2019). To then quantify the extent to which Error Rate 
Balance is achieved for a given subsample of child-reunification pairs, 
we identify at each threshold the greatest disparity in either false 
negative rates or false positive rates across any pairing of protected 
attribute levels. This value, at each threshold, is calculated such that it 
ranges continuously between 0 and 1, with larger values indicating 
greater similarity in false positive rates and false negative rates (i.e., 
greater Error Rate Balance). For example, a value of 0.5 indicates that at 
least one level of the protected attribute has an error rate that is half that 
of some other protected attribute level at the specified threshold. 

The penalized objective function of this procedure then finds the 
group specific threshold values that minimize the amount of unfairness 
within a given subsample, subject to the constraint that the accuracy 
costs incurred by shifting from group-agnostic threshold values to 
group-specific threshold values do not exceed a bounded amount. This 
bounded amount is functionally achieved through a gated weighting 
mechanism that ranges continuously between zero and one. When this 
weight is set equal (i.e., swiveled) to zero, the optimization process will 
yield the fairest group-specific threshold values for the given subsample 
without any regard for accuracy costs. When this weight is set equal (i.e., 
swiveled) to one, the optimization process is exclusively concerned with 
accuracy costs and, consequently, the returned group-specific threshold 
values for the given subsample will be identical to the group-agnostic 
threshold value. More generally, as the value of the weight is 
increased over the range of values between these extremes (i.e., swiv
eled closer and closer to one), the pursuit of fairness becomes more 
heavily anchored to the accuracy achieved through the group-agnostic 
threshold value. By iterating the procedure across a tuning grid for 
this weight, ranging from zero to one, the functional relationship be
tween accuracy and fairness can be empirically derived at each 
threshold. 

To be clear, the accuracy cost in this penalized objective function is 
not a direct measure of change to any specific type of predictive accu
racy, but is instead the proportion of changing risk scores (e.g., S2 
changes to S3 or S3 changes to S2), which serves as a broad catch-all for 
changes across any predictive performance measures. In particular, 
when a risk score changes as a result of transitioning from the group- 
agnostic threshold value to the group-specific threshold values, all 
predictive performance measures are unavoidably impacted, though not 
necessarily for the worse. Hence, the greater the proportion of changing 
risk scores, the greater the potential accuracy-related costs. 

By then applying this procedure across a large number of random 
subsamples (e.g., 200) and averaging the resultant group-agnostic and 
group-specific threshold values across these subsamples, the corre
sponding pre- and post-fairness corrected threshold values at a specified 
gated penalty weight are obtained. The entirety of the procedure is 
provided in Appendix B, along with additional details regarding the 
quantification of Error Rate Balance and any of the other eight group- 
level definitions of fairness, as given in Verma and Rubin (2018), that 
can be utilized with the procedure: Calibration, Conditional Use Accu
racy Equality, Equalized Odds, Overall Accuracy Equality, Predictive 
Equality, Predictive Parity, Statistical Parity, and Treatment Equality. 

3.4. Applicability to non-machine-learning decision systems 

While this section focused on the approach to algorithmic fairness 
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within the context of the reunification algorithm, the general procedure 
is broadly applicable both in decision systems using other machine- 
learning algorithms and in decision systems relying exclusively on 
human decision-makers. In particular, the first two questions can be 
asked of any decision-point, whether or not an algorithm informs that 
decision point. Hence, answering these two questions enables a fairness 
audit of decision systems driven exclusively by human decision-makers 
in the same way that it enables a fairness audit of the decisions recom
mended by a machine learning algorithm. Importantly, however, in the 
context of a decision system driven exclusively by human decision- 
makers, the possible answers to the third question are inherently 
limited to, for example, blunt policy-based procedural changes. 

4. Results of fairness correction procedure 

The developed procedure discussed in Section 3.3 was applied to the 
reunification algorithm using 200 random subsamples across each of 
101 distinct gated penalty weights (i.e., 0,0.01,…,0.99,1), yielding a set 
of pre- and post-fairness corrected threshold values at each penalty 
weight, for each of the three thresholds. To then generate the empiri
cally derived trade-off continuum between fairness and accuracy, the 
predictive performance and algorithmic fairness of these various sets of 
threshold values were evaluated. 

The dependent nature of the child-reunification pairs again facili
tates the need for a subsampling procedure. In particular, for each 

penalty weight, the pre-fairness corrected threshold values, which are 
necessarily the same across all penalty weights, and the post-fairness 
corrected threshold values were used to create risk scores from the 
predicted probabilities of each of 200 random subsamples of child- 
reunification pairs. For each such subsample, fairness and predictive 
performance measures were computed and then averaged across the 200 
subsamples. The full details of this procedure are provided in Appendix 
B.4. For all 101 gated penalty weights, for each of the three thresholds, 
for both the pre- and post-fairness-corrected threshold values, average 
Error Rate Balance versus penalty weight is plotted in the left-hand 
graphic of Fig. 1, while average Error Rate Balance versus the average 
proportion of changing risk scores (i.e., the empirically derived trade-off 
continuum between fairness and accuracy) is plotted in the right-hand 
graphic. 

Two observations stand out from Fig. 1. First, fairness is not neces
sarily maximized when the gated penalty weight is zero, as evidenced by 
the low- and average-risk thresholds of the left-hand plot. This is not 
unexpected since the optimization occurs within subsamples, as opposed 
to across subsamples, and necessitates treating the penalty weight as a 
tuning parameter, as has been done. Second, the relationship between 
Error Rate Balance and the proportion of changing risk scores, as evi
denced in the right-hand plot, is different and non-linear across all three 
thresholds. These trade-off continua reveal marginal gains in Error Rate 
Balance exist beyond 2.5% of risk scores changing, with maximal gains 
requiring close to 5% of risk scores changing. Such a reality exemplifies 

Fig. 1. For each of the low-, average-, and high-risk thresholds, for both the pre- and post-fairness corrected threshold values, average Error Rate Balance versus 
gated penalty weight is plotted in the left-hand graphic, while average Error Rate Balance versus the average proportion of changing risk scores (i.e., the empirically 
derived trade-off continuum between fairness and accuracy) is plotted in the right-hand graphic. 

Fig. 2. The predicted probability for each child-reunification pair, within a single random subsample, is plotted. The four panels correspond to the risk scores 
assigned under the post-fairness corrected threshold values, grouped according to protected attribute level, while the three horizontal maroon lines running across 
the panels correspond to the pre-fairness corrected threshold values. 
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the importance of understanding the functional relationship between 
fairness and accuracy. In fact, without such knowledge, it is unlikely that 
stakeholders will confidently identify within the available solution- 
space the “ideal” trade-off between accuracy and fairness. 

4.1. Chosen trade-off 

In light of the information conveyed through the plots of Fig. 1, and 
given that an upper bound of less than 5% of changing risk scores is 
required to achieve maximum fairness, the “best” post-fairness- 
corrected threshold values were identified as those that maximize the 
extent to which Error Rate Balance is achieved. Such maxima were 
identified at gated penalty weights of 0.17, 0.23, and 0.00 for the low- 
risk, average-risk, and high-risk thresholds, respectively. Using these 
values of the gated penalty weight at their respective threshold, the 
procedure detailed in Appendix B.4 was run one additional time for 200 
random subsamples. The resulting average proportion of risk scores that 
change in transitioning from the corresponding pre- to post-fairness- 
corrected threshold values is only 4.76% (standard deviation of 0.05%). 

To visualize the change in scores resulting from these post-fairness 
corrected thresholds, consider Fig. 2, where for a single random sub
sample, each point represents a predicted probability for a unique child- 
reunification pair. The four panels of this figure correspond to the post- 
fairness corrected risk scores, grouped according to protected attribute 
level, and the three horizontal maroon lines correspond to the pre- 
fairness corrected threshold values. From this plot, the practical 
impact of the fairness-correction procedure is evident. For example, in 
panel 3, a small number of BL child-reunification pairs fall above the 
upper-most maroon line, indicating that these observational units would 
have been assigned a risk score of 4 under the pre-fairness corrected 
threshold values, but are now assigned a risk score of 3 under the post- 
fairness corrected threshold values. Similarly, in that same panel, a small 
number of HPA child-reunification pairs fall below the middle maroon 
line, indicating that these observational units would have been assigned 
a risk score of 2 under the pre-fairness corrected threshold values, but 
are now assigned a risk score of 3 under the post-fairness corrected 
threshold values. Furthermore, from this plot it is evident at each 
threshold that more evidence (i.e., a higher predicted probability) is 
required of BL and NV child-reunification pairs than of HPA and WH 
reunification pairs before elevating the corresponding risk score. 

4.1.1. Error rate balance and predictive performance assessment 
For each threshold, the average change (post-fairness corrected 

minus pre-fairness corrected) in Error Rate Balance and in five common 
predictive performance measures as a result of transitioning from the 
pre- to post-fairness corrected threshold values is provided in Table 2, 
along with the corresponding standard deviations across the 200 
random subsamples. From this table, it is clear that the fairness- 

correction procedure has, at each threshold, meaningfully improved 
fairness with comparatively minimal cost to predictive performance. For 
example, at the high-risk threshold, the minimum parity in both the false 
positive and false negative error rates between any two levels of the 
protected attribute (i.e., ERB) has been increased, on average, by 0.285 
(standard deviation of 0.034), with the cost of this improvement, on 
average, being no more than 0.004, in absolute value, to any of the 
overall predictive performance measures at that threshold. Importantly, 
the fairness at each threshold is not only improved, but categorically 
good with an average Error Rate Balance of 0.83, 0.82, and 0.87 at the 
low-, average-, and high-risk thresholds, respectively. 

4.2. Considering alternative group-level definitions 

For jurisdictions that elect, or use-cases that result in, an alternative 
definition of algorithmic fairness, the presented procedure is applicable. 
In Appendix C, we demonstrate such generalizability within the context 
of the reunification algorithm, applying the procedure under three 
alternative specifications of algorithmic fairness: Conditional Use Ac
curacy Equality, Treatment Equality, and Calibration. Regardless of the 
utilized definition, however, difficult trade-offs will persist. In fact, these 
difficult trade-offs exist even without the use of an algorithm, and “[r] 
ejecting model-driven or automated decision making is not a way to 
avoid these problems” (Mitchell, Potash, Barocas, & Alexander D’Am
our, 2020, pg. 15). 

Hence, rather than accepting the “default” trade-offs of either purely 
human-based decision systems or uncorrected classification algorithms, 
we advocate for identifying the trade-offs that are most appropriate for 
the use-case, prior to training the algorithm, and then fairness- 
correcting accordingly. We hope that the broad generalizability of the 
presented procedure can help move conversations surrounding the 
algorithmic fairness of Child Welfare machine learning tools from 
broadly stated concerns to direct inquires pertaining to the choice of the 
protected attributes, the definition of algorithmic fairness, and the uti
lized correction procedure. 

5. Discussion 

A first-of-its-kind machine learning algorithm designed to serve as a 
decision-support tool for Oregon Child Welfare staff tasked with making 
permanency-related decisions was developed and presented. This algo
rithm estimates the probability of a child re-entering substitute care 
within one year of an initiated reunification. This outputted probability 
is then thresholded to provide front-line staff a corresponding four-tier 
risk score. Importantly, using the procedure developed and presented 
above, which is a contextually necessary extension of procedures pro
posed in the literature, these risk scores have been “corrected” to miti
gate a lack of algorithmic fairness across a race and ethnicity-based 
protected attribute. The presented reunification tool is therefore also the 
first Child Welfare machine learning algorithm to proactively address 
algorithmic fairness. We hope, broadly speaking, this work will subse
quently help set a new standard of practice for algorithmic fairness in the 
machine learning tools of Child Welfare. 

While the developed tool represents a substantial step forward from 
the otherwise current “standards” of algorithmic fairness in the predic
tive analytic tools of Child Welfare, it is far from a proverbial “final” 
step. We highlight below some additional efforts that could lead to 
further progress. Note that these highlighted efforts, like the presented 
work above, assume that the decision to develop an algorithm has been 
made, with an identified outcome and feature set, and will therefore 
require decisions surrounding the protected attribute(s), definition of 
algorithmic fairness, and corresponding fairness-correction procedure. 
This does not mean, however, that there are not important choices and 
assumptions preceding this stage, including the choice of outcome var
iable, which have ramifications for the algorithmic fairness of the final 
developed tool or whether such a tool is pursued in the first place (e.g., 

Table 2 
The average change (post-fairness corrected minus pre-fairness corrected), 
rounded to three decimal places, in Error Rate Balance (ERB) and overall pre
dictive performance measures at each threshold, along with corresponding 
standard deviations across 200 random subsamples. The predictive performance 
measures include Accuracy (ACC), False Negative Rate (FNR), False Positive 
Rate (FPR), Negative Predictive Value (NPV), and Positive Predictive Value 
(PPV).  

Measure Low-Risk Threshold 
Change 

Average-Risk 
Threshold Change 

High-Risk 
Threshold Change 

Mean SD Mean SD Mean SD 

ERB 0.154 0.068 0.218 0.032 0.285 0.034 
ACC − 0.012 < 0.0005 − 0.006 < 0.0005 0.000 < 0.0005 
FNR − 0.005 0.001 − 0.011 0.001 − 0.004 0.001 
FPR 0.015 < 0.0005 0.010 < 0.0005 0.001 < 0.0005 
NPV − 0.000 < 0.0005 0.001 < 0.0005 0.001 < 0.0005 
PPV − 0.003 < 0.0005 − 0.004 0.001 − 0.000 0.001  
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Green (2020), Mitchell et al. (2020), Obermeyer, Powers, Vogeli, & 
Mullainathan (2019)). Such important considerations, however, are 
beyond the focus of this current paper. 

5.1. Future exploration 

5.1.1. Cross-category definitions of algorithmic fairness 
The choice of a group-level definition in this work was driven by the 

current limitations of individual-level and causal-reasoning based defi
nitions of algorithmic fairness. However, there is potential for blending 
the ideas and concepts from all three of these categories into an algo
rithmic fairness approach. For example, in Chouldechova and Roth 
(2018), several proposed approaches seeking to bridge the gap between 
group- and individual-level fairness are highlighted, with source refer
ences provided, where the objective is to identify statistical fairness 
definitions which hold “…not just on a small number of protected 
groups, but on an exponential or infinite class of groups” (Chouldechova 
& Roth, 2018, pg.4). Whether such approaches will ultimately be viable 
is yet unknown, but if successful these approaches could yield the ben
efits of both categories of definitions. 

Furthermore, while notions of causal-reasoning based definitions of 
fairness are currently not a pragmatically viable option, the exercise of 
considering fairness through such a frame “…can make value judgments 
more explicit…[and] allows practitioners to designate which causal 
pathways from sensitive attributes to decisions constitute ’acceptable’ 
or ’unacceptable’ sources of dependence between sensitive attributes 
and decisions” (Mitchell et al., 2020, pg.13). In other words, the 
framework provided through such approaches, even if not directly 
implementable, can still serve (1) to potentially inform which features 
are included in the training set and (2) to potentially filter which group- 
level definitions are viable within a given use-case. While this does not 
bypass the difficulties of attempting to map out the hypothetical causal 
paths in proxy-laden administrative data, it does suggest that embarking 
on such an effort may have utility. 

5.1.2. Multi-stage algorithmic fairness correction procedures 
The use of the single “correction” procedure developed and pre

sented in this paper was motivated by the self-imposed transparency, 
interpretability, and operationalizability characteristics discussed in 
Section 3.3. Such motivations precluded the exploration of pre- and in- 
processing approaches, which may yield “better” trade-offs between 
algorithmic fairness and predictive performance, albeit at the expense of 
some combination of these three characteristics. We suspect that in the 
future, however, when algorithmic fairness considerations have become 
innate to algorithm development within Child Welfare, the need for such 
characteristics may be softened. In such a future, because it is possible 
within a single use-case to combine approaches across pre-, in-, and post- 
processing classes (Berk et al., 2017), the search for “best” solutions 
could then include the exploration of composite correction procedure, 

which is analogous to the common machine learning techniques of 
model ensembling and model stacking. This could lead to a multi-staged 
algorithmic fairness correction procedure in which, for example, a pre- 
processing procedure is first applied before training the algorithm and a 
post-processing procedure is also applied at the thresholding stage. 

5.1.3. Fairness across sequential decisions 
While the reunification algorithm developed and presented in this 

paper is viewed through the lens of a single decision point, there are 
critical decision points within Child Welfare that come before and, 
potentially, after this decision point. If other machine learning algo
rithms are developed to support human decision-makers at these other 
decision points, and assuming these tools are also “corrected” to miti
gate a lack of algorithmic fairness in the generated risk scores, what 
considerations should be given to the algorithmic fairness across the 
composition of these decision points? The need to explore algorithmic 
fairness across a sequence of decision points, rather than within an 
isolated decision point, is highlighted in Chouldechova and Roth (2018) 
and initially explored in Bower et al. (2017) under the label of fair 
pipelines. Such work will likely garner greater attention after more ju
risdictions have developed and deployed a single machine learning al
gorithm and correspondingly started contemplating additional 
algorithms. 

5.2. Final thoughts 

The reunification tool and corresponding algorithmic fairness 
correction procedure presented in this work are far from perfect, but 
together they can help improve upon the status quo by equitably 
increasing the amount and success rate of reunifications. While the use 
of algorithms in domains such as Child Welfare is hotly contested, it 
should be recognized that in use-cases such as this, human decision- 
makers access and are informed by the same administrative data that 
the algorithm is trained on. Furthermore, the extent to which that 
administrative data influences their decisions is understandably and 
unavoidably inconsistent across observational units. Hence, by imple
menting a risk algorithm, like the reunification tool, to inform human- 
decisions, this inconsistent and incomplete use of administrative data 
by staff is buttressed with a decision support tool that not only leverages 
administrative data in a consistent and thorough manner, but also ad
heres to an agreed upon set of shared values articulated through the 
identified definition of algorithmic fairness. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper.  

Appendix A. Modeling best practices 

A.1. Selective labeling 

The selective labeling problem (Lakkaraju, Kleinberg, Leskovec, Ludwig, and Mullainathan, 2017) occurs when historical data are overly influ
enced by the very decision which a tool seeks to support. In Child Welfare reunification, this occurs because outcomes (e.g., whether the child ex
periences further abuse/neglect at home) is partly influenced by the very act of returning the child home. Thus, the historical data should be analyzed 
solely for child-transition pairs which represent a reunification with family. Thus, the outcomes of interest become conditional on the decision, and the 
machine learning classifier is less likely to perpetuate poor decisions. In this way, when we refer to a child welfare outcome, we are sure to avoid bias 
via the selective label problem by ensuring that we are calculating the likelihood of the outcome conditional on the decision (e.g., the likelihood of a 
return to substitute care conditional on the child’s reunification with his/her family). 
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A.2. Repeated observations 

Repeated observation leakage can occur if independence is violated in the data used to train the machine learning classifier. In Child Welfare 
reunification, children may have been involved in multiple reunification events over time. Thus, it is important to unduplicate the historical data so 
that the same child does not occur twice in the data set. When the data is split into training data and testing data, in order to test the predictive 
performance of the machine learning classifier, this unduplication ensures that information does not “leak” between the training set and the testing set, 
which can cause predictive performance to be inflated. Because the unduplication reduces the volume of the historical data, we have constructed a 
repeated sample technique which repeats the unduplication step over and over until a series of classification models are constructed and all child- 
reunification pairs have been included in at least one of the models. This technique is rooted in the common data science practice of model 
ensembling. It ensures that we can maximally draw on historical data in the construction of our decision support tool, and do so in a way that prevents 
the inflation of predictive performance metrics. 

A.3. Censoring and data windows 

Oregon’s Child Welfare’s SACWIS system came online in August 2011. This means that historical data is available in a reliable and consistent 
format only from a certain historical time point. Reunifications that occurred in February 2012 have only six months of reliable historical data, while 
reunifications that occurred in August 2019 have eight years of reliable historical data. For this reason, it is important to standardize the historical data 
window. Otherwise, the date of a historical reunification will have undue influence on the historical calculation of risk, and the model will not be 
generalizable to new observations. To prevent this from occurring, we set a historical data window to 1.5 years. 

A similar censoring bias can occur with the outcome window. For example, a child involved in a February 2012 reunification has eight years of time 
in which to experience (or not experience) an outcome, whereas a child involved in an August 2019 reunification has had only one year to experience 
(or not experience) the outcome. Consequently, a fixed outcome window of one year was established to prevent undue data bias via the timing of the 
report. 

Appendix B. Full methodological details 

The primary objective of this section is to provide the full methodological details of the developed algorithmic fairness correction procedure. To 
help facilitate understanding of the details of the procedure, and in particular how it generalizes to eight other group-level definitions of algorithmic 
fairness, a rigorous exemplification of the approach to quantifying such fairness measures is first required. 

B.1. Quantifying error rate balance 

To quantify the extent to which Error Rate Balance is achieved for a single random subsample of child-reunification pairs, we identify at each 
threshold the greatest disparity in either false negative rates or false positive rates across any pairing of protected attribute levels. To help illustrate this 
measure, consider Table 3. The left-hand side of this table provides, for each level of the protected attribute, the false positive and false negative rates 
at the average risk threshold for a single random subsample of child-reunification pairs. Correspondingly, the right-hand side of this table provides, for 
all possible pairings of protected attribute levels, the pairwise ratio of false negative rates and the pairwise ratio of false positive rates. 

To quantify the extent of the observed disproportionality in these false negative and false positive rates, we utilize pairwise error rate ratios. 
Consider, for example, the pairwise false positive rate ratio between BL and HPA child-reunification pairs that is provided in row 2, column 1 of the 
right-hand matrix of Table 3. The given value of 0.60 is obtained by taking the smaller false positive rate between the BL and HPA levels and dividing it 
by the larger of the two false positive rates, i.e., 0.203

0.342 ≈ 0.60. This value conveys that the rate at which would-be-successful HPA child-reunification 
pairs are incorrectly predicted to “fail” is only 0.60 the rate at which would-be-successful BL child-reunification pairs are incorrectly predicted to 
“fail”. As yet another example, consider the pairwise false negative rate ratio between NV and WH child-reunification pairs that is provided in row 3, 
column 4 of the right-hand matrix of Table 3. The given value of 0.80 is obtained by taking the smaller false negative rate between the NV and WH 
levels and dividing it by the larger of the two false negative rates, i.e., 0.309

0.386 ≈ 0.80. This value conveys that the rate at which would-be-unsuccessful NV 
child-reunification pairs are incorrectly predicted to “succeed” is only 0.80 the rate at which would-be-unsuccessful WH child-reunification pairs are 
incorrectly predicted to “succeed”. These two values, along with the other 10 analogously calculated ratios, each individually shed light on the 
potential unfairness of the algorithm at the average-risk threshold, but all 12 collectively must be considered in performing a comprehensive 
assessment. 

To achieve such an assessment, we summarize these 12 pairwise error rate ratios into a single number. In choosing this summary measure, 

Table 3 
For each level of the protected attribute, for a single random subsample of child-reunification pairs, the false positive and false negative rates at the average risk 
threshold are provided in the left-hand side of this table. Correspondingly, in the right-hand side, the pairwise ratio of false negative rates and the pairwise ratio of false 
positive rates are provided for all possible pairings of protected attribute levels. Note that these pairwise error rate ratios are always constructed such that the larger 
error rate is in the denominator and the smaller is in the numerator, thus ensuring that all ratios are between 0 and 1. To then quantify with a single number the extent 
to which Error Rate Balance is achieved for a single random subsample at an arbitrary threshold, we utilize the minimum of the 12 pairwise error rate ratios, which 
corresponds to 0.60 in the table below.  

Level Error Rate  Pairwise Error Rate Ratios 

FNR FPR BL HPA NV WH 

BL 0.331 0.342 BL  0.90 0.93 0.86 
HPA 0.368 0.203 HPA 0.60  0.84 0.95 
NV 0.309 0.310 NV 0.91 0.66  0.80 
WH 0.386 0.279 WH 0.82 0.73 0.90   
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recognize that all pairwise error rate ratios will always be between 0 and 1, where a value of 1 means that the two corresponding levels of the protected 
attribute have the same false negative rate, or the same false positive rate, depending on which error rate is being considered. Furthermore, the smaller 
the pairwise error rate ratio, the greater the disproportionality in the respective error rates between the two corresponding levels of the protected 
attribute. The smallest of these 12 ratios therefore represents the most egregious instance of disproportionality in error rates across the levels of the 
protected attribute. Consequently, to quantify with a single number the extent to which Error Rate Balance is achieved, for a single random subsample, 
at any specified threshold, we utilize the minimum of the twelve possible pairwise error rate ratios; for the subsample yielding Table 3, this value is 
0.60. The developed procedure to mitigate a lack of Error Rate Balance seeks to increase this measure towards one. To accommodate the dependence 
structure of the observational units, this Error Rate Balance measure is then calculated, at each threshold, across a large number of random sub
samples. The corresponding average value for each threshold represents an audit of the extent to which Error Rate Balance is achieved at that 
threshold. 

B.1.1. Quantifying other group-level measures of fairness 
The approach to quantifying the extent to which Error Rate Balance is achieved across a single subsample of child-reunification pairs is 

straightforwardly generalized for utilization with seven other group-level definitions of fairness. In particular, this quantification approach can be 
directly utilized with Statistical Parity, Overall Accuracy Equality, Predictive Parity, Equal Opportunity, Predictive Equality, Conditional Use Ac
curacy Equality, and Treatment Equality by replacing the use of pairwise ratios across false negative and false positive rates with the corresponding 
pairwise ratios across analogous measure(s) dictated by the particular definition of algorithmic fairness. For example, with Conditional Use Accuracy 
Equality, these measures would be the positive predictive and negative predictive values, whereas with Predictive Parity this measure would be just 
the positive predictive value. 

With one alternative group-level definition, Calibration, the generalization is subtly, but importantly, different. In particular, with Calibration, the 
requisite pairwise ratios are computed at each risk score rather than at each threshold. Consequently, the approach amounts to first calculating the 
proportion of observational units assigned risk score S, where S ∈ {1,2,3,4}, that go on to experience the adverse event, and then calculating the 
pairwise ratios of such a proportion across each pairing of protected attribute levels.. 

B.2. Full fairness correction procedure 

In this section, we provide the step-by-step details of the proposed process for obtaining post-fairness-corrected threshold values within the context 
of the reunification algorithm. While the procedure is exemplified for three thresholds – low-risk, average-risk, and high-risk – and four protected 
attribute levels – BL, HPA, NV, and WH – the procedure can straightforwardly be generalized to accommodate an arbitrary number of thresholds and 
protected attribute levels. 

Let X be the 4 × N matrix in which the N rows represent the entire sample of child-reunification pairs and the 4 columns represent, respectively, a 
unique child identification number (for subsampling purposes), the observed value of the binary outcome variable, the level of the protected attribute, 
and the predicted probability obtained from the algorithm.  

1. Set number of subsamples, I (e.g., I = 200).  
2. Set the value of the tuning parameter, w, where 0⩽w ≤ 1.  
3. Initialize the subsample index: i = 1.  
4. Obtain the ith random subsample of X, denoted by Xi.  
5. Calculate the group-agnostic low-risk, average-risk, and high-risk threshold values, ΦL,i,ΦA,i,ΦH,i, corresponding to subsample i, where  

• ΦA,i represents the average predicted probability for the child-reunification pairs of subsample i,  
• ΦL,i represents the 50th percentile of predicted probabilities for the child-reunification pairs of subsample i that are less than ΦA,i, and  
• ΦH,i represents the 75th percentile of predicted probabilities for the child-reunification pairs of subsample i that are greater than ΦA,i.  
† Recall that the identification of such cutoffs is rooted in the use-case. 

6. Obtain the group-specific low-risk threshold values for subsample i, θ̂L,i =
(

θ̂
BL
L,i , θ̂

HPA
L,i , θ̂

NV
L,i , θ̂

WH
L,i

)′

, by solving the following penalized optimi

zation problem 

argmin
θL,i

(
1 − w

)(
1 − ERB

(
θL,i
))

+ wΔ
(
θL,i,ΦL,i

)

subject to 0 < min
{

θBL
L,i , θHPA

L,i , θNV
L,i , θ

WH
L,i

}
⩽ΦL,i

ΦL,i⩽max
{

θBL
L,i , θ

HPA
L,i , θNV

L,i , θ
WH
L,i

}〈
ΦA,i,

(1)  

where ERB(θL,i) is the value quantifying the extent to which Error Rate Balance is achieved at θL,i, and Δ(θL,i,ΦL,i) is the proportion of risk scores 
that change (i.e., either from 1 to 2 or from 2 to 1) when moving from the group-agnostic threshold value, ΦL,i, to the group-specific threshold 
values specified by θL,i.  

7. Obtain the group-specific average-risk threshold values for subsample i, θ̂A,i =
(

θ̂
BL
A,i, θ̂

HPA
A,i , θ̂

NV
A,i , θ̂

WH
A,i

)′

, by solving the following penalized 

optimization problem 
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argmin
θA,i

(
1 − w

)(
1 − ERB

(
θA,i
))

+ wΔ
(
θA,i,ΦA,i

)

subject to θ̂
BL
L,i < θBL

A,i⩽ΦH,i

θ̂
HPA
L,i < θHPA

A,i ⩽ΦH,i

θ̂
NV
L,i < θNV

A,i ⩽ΦH,i

θ̂
WH
L,i < θWH

A,i ⩽ΦH,i

min
{

θBL
A,i, θ

HPA
A,i , θNV

A,i , θWH
A,i

}
⩽ΦA,i

max
{

θBL
A,i, θHPA

A,i , θNV
A,i , θ

WH
A,i

}
⩾ΦA,i,

(2) 

where ERB(θA,i) is the value quantifying the extent to which Error Rate Balance is achieved at θA,i, and Δ(θA,i,ΦA,i) is the proportion of risk 
scores that change (i.e., either from 2 to 3 or from 3 to 2) when moving from the group-agnostic threshold value, ΦA,i, to the group-specific 
threshold values specified by θA,i. 

8. Obtain the group-specific high-risk threshold values for subsample i, θ̂H,i =
(

θ̂
BL
H,i, θ̂

HPA
H,i , θ̂

NV
H,i , θ̂

WH
H,i

)′

, by solving the following penalized opti

mization problem 

argmin
θA,i

(1 − w)
(
1 − ERB

(
θH,i
) )

+ wΔ
(
θH,i,ΦH,i

)

subject to θ̂
BL
A,i < θBL

H,i < 1

θ̂
HPA
A,i < θHPA

H,i < 1

θ̂
NV
A,i < θNV

H,i < 1

θ̂
WH
A,i < θWH

H,i < 1

min
{

θBL
H,i, θHPA

H,i , θNV
H,i , θ

WH
H,i

}
⩽ΦH,i

max
{

θBL
H,i, θ

HPA
H,i , θNV

H,i , θWH
H,i

}
⩾ΦH,i,

(3)  

where ERB(θH,i) is the value quantifying the extent to which Error Rate Balance is achieved at θH,i, and Δ(θH,i,ΦH,i) is the proportion of risk 
scores that change (i.e., either from 3 to 4 or from 4 to 3) when moving from the group-agnostic threshold value, ΦH,i, to the group-specific 
threshold values specified by θH,i.  

9. Increase subsample index: i = i + 1. If i⩽I, repeat steps 4–8, else move on to step 10.  
10. For the specified value of w, obtain the pre-fairness corrected values for the low-risk threshold, ΦL,w, the average-risk threshold, ΦA,w, and the 

high-risk threshold, ΦH,w. These values are obtained via the following bagging-like process:  
• ΦL,w = 1

I
∑I

i=1ΦL,i, with ΦA,w and ΦH,w analogously calculated.  

11. For the specified value of w, obtain the post-fairness corrected values for the group-specific low-risk thresholds, θ̂L,w =
(

θ̂
BL
L,w, θ̂

HPA
L,w , θ̂

NV
L,w, θ̂

WH
L,w

)′

, 

the group-specific average-risk thresholds, θ̂A,w =
(

θ̂
BL
A,w, θ̂

HPA
A,w , θ̂

NV
A,w, θ̂

WH
A,w

)′

, and the group-specific high-risk thresholds, 

θ̂H,w =
(

θ̂
BL
H,w, θ̂

HPA
H,w , θ̂

NV
H,w, θ̂

WH
H,w

)′

. These values are obtained via the following bagging-like process:  

• θ̂
BL
L,w = 1

I
∑I

i=1 θ̂
BL
L,i , with θ̂

HPA
L,w , θ̂

NV
L,w, and θ̂

WH
L,w similarly calculated. The constituent components of θ̂A,w and θ̂H,w are analogously calculated as 

well. 

B.2.1. Understanding the constraints of the optimization procedure 
This section clarifies the objectives of the constraints associated with the optimization problem in steps 6–8 of Appendix B.2. In particular, through 

these constraints the identified group-specific threshold values are guaranteed to exist (i.e., be between 0 and 1) and to exhibit two properties we label 
as “orderliness” and “coveredness”. By orderliness, we mean that within a particular level of the protected attribute, it must be the case that the low- 

risk threshold value is less than the average-risk threshold value, which is in turn less than the high-risk threshold value (e.g., θ̂
BL
L,i < θ̂

BL
A,i < θ̂

BL
H,i). By 

coveredness, we mean that at a particular threshold, the group-agnostic threshold value must be within the closed interval created by the corre
sponding minimum and maximum group-specific threshold values (e.g., ΦA,i ∈ [minθ̂A,i ,maxθ̂A,i ]). The logic with this coveredness property is to retain, 
as much as possible, the meaning and intent behind the “original”, group-agnostic, threshold values that were identified as part of the business case 
motivating the algorithm’s development. 

B.2.2. Understanding the procedure 
This section provides insight into the logic of the correction procedure. The subsampling component of this procedure addresses the dependence 

structure of the observational units (i.e., child-reunification pairs). in instances where no such dependence structure exists, two options are possible. In 
particular, either the procedure could be run one time (i.e., I = 1) on the full data set, or a bootstrap resampling approach could implemented with I 
equal to the number of desired bootstrap resamples. 

To recognize how the procedure yields an empirical curve of the trade-off continuum between accuracy and fairness, consider the penalized 
objective function utilized with each subsample. This function measures the extent of the algorithmic unfairness in subsample i through the 
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1 − ERB(θt,i) term. Since smaller values of this term correspond to “fairer” group-specific threshold values, the “fairest” threshold values are obtained 
by minimizing this term. To then quantify and capture the trade-off between fairness and accuracy, this term is penalized by the corresponding 
decrease in accuracy incurred as a result of adopting the group-specific threshold values over the group-agnostic threshold value. The utilized penalty 
term, Δ(θt,i,Φt,i), is not a direct measure of any specific type of predictive accuracy, but is instead a broad catch-all for all such measures. In particular, 
when a risk score changes as a result of transitioning from the group-agnostic threshold value to the group-specific threshold values, all predictive 
performance measures are necessarily impacted, though not necessarily for the worse. Hence, the greater the proportion of changing risk scores, the 
greater the potential accuracy-related costs. 

The gated weighting mechanism, with weight 0⩽w ≤ 1, bounds how far from the group-agnostic threshold value the optimizer is willing to search 
for the optimal group-specific threshold values. When w = 0, the optimization process will yield the fairest group-specific threshold values for 
subsample i without any regard for accuracy. When w = 1, the optimization process in exclusively concerned with accuracy and, consequently, the 
returned group-specific threshold values for subsample i will be identical to the group-agnostic threshold value. More generally, as the value of w is 
increased over the range of values between these extremes, the pursuit of fairness becomes more heavily anchored to the accuracy achieved through 
the group-agnostic threshold value. By iterating the procedure across a tuning grid of w-values ranging from zero to one, the functional relationship 
between accuracy and fairness can empirically be explored at each threshold. 

Finally, the procedure is easily applied across alternative group-level definitions of algorithmic fairness. This is achieved by replacing ERB(θt,i)

with the analogous measure for the specified alternative definition, as discussed in Appendix B.1.1. 

B.2.3. A visual check on the procedure 
This section provides a visual means for better understanding key components of the procedure. In particular, recall that the procedure described in 

Section B.2 was applied to the reunification algorithm with 200 random subsamples (i.e., I = 200) utilized across each of 101 distinct penalty weights 
(i.e., w = 0,0.01,…,0.99,1). Fig. 3 displays the corresponding pre- and post-fairness-corrected low-risk threshold values obtained at each penalty 
weight; analogous results are found at both the average-risk and high-risk thresholds. Observe in this figure that, as should necessarily be the case, the 
pre-fairness-corrected threshold values are the same across all four protected attribute levels and all penalty weights. Furthermore, observe that as w 
increases towards one, the distance between the pre- and post-fairness-corrected threshold values tends to decrease towards zero. This is by design and 
demonstrates that the penalty term in the penalized objective function is operating as intended. More specifically, as costs to accuracy become more 
and more “valued”, as conveyed through the increasing value of w, the post-fairness-corrected threshold values are “pulled back“ towards their 
corresponding “accuracy-anchored” pre-fairness-corrected threshold value. Finally, for each value of w, observe the intended consequence of the 
“coveredness” constraint in that at least one protected attribute level has their post-fairness corrected threshold value above the pre-fairness corrected 
threshold value and at least one protected attribute levels has their post-fairness corrected threshold value below the pre-fairness corrected threshold 
value. 

B.3. Simultaneous penalized optimization for calibration 

The step-by-step procedure detailed in Appendix B.2 directly applies to eight of the nine group-level definitions of algorithmic fairness discussed in 
this manuscript. More specifically, in addition to Error Rate Balance, the procedure can be directly utilized with Statistical Parity, Overall Accuracy 
Equality, Predictive Parity, Equal Opportunity, Predictive Equality, Conditional Use Accuracy Equality, and Treatment Equality by replacing ERB(θ⋅,i)

with an analogous measure dictated by the particular definition of algorithmic fairness, as discussed in Appendix B.1.1. 
For Calibration, however, the sequential penalized optimization problems in steps 6–8 of Appendix B.2 must be combined into one simultaneous 

penalized optimization problem, given below. Additionally, note that ERB(θ⋅,i), which measures the extent two which Error Rate Balance is achieved 
at an arbitrary threshold for subsample i (so θ⋅,i = θL,i, θA,i, or θH,i), is now replaced with CAL(Si,θT,i), which measures the extent to which Calibration is 
achieved at risk score S ∈ {S1, S2, S3, S4} for subsample i, which depends on one or more thresholds in the set of all thresholds (so θT,i =

(θL,i, θA,i, θH,i)
′

). Calculation of CAL(Si, θT,i) at each risk score S ∈ {S1, S2, S3, S4} is described in Appendix B.1.1. Consequently, Calibration can be 
utilized within the developed fairness correction procedure by replacing steps 6–8 of Appendix B.2 with the following step:  

• Obtain the group-specific threshold values across the low-, average-, and high-risk thresholds, for the ith subsample, ̂θT,i =
(

θ̂L,i , θ̂A,i , θ̂H,i
)′

, where 

θ̂L,i =
(

θ̂
BL
L,i , θ̂

HPA
L,i , θ̂

NV
L,i , θ̂

WH
L,i

)′

, 

θ̂A,i =
(

θ̂
BL
A,i, θ̂

HPA
A,i , θ̂

NV
A,i , θ̂

WH
A,i

)′

, and. 

θ̂H,i =
(

θ̂
BL
H,i, θ̂

HPA
H,i , θ̂

NV
H,i , θ̂

WH
H,i

)′

, by solving the following penalized optimization problem 

Fig. 3. The pre- and post-fairness corrected low-risk threshold values resulting from utilizing the procedure detailed in Section B.2 with 200 random subsamples (i.e., 
I = 200) across each of 101 distinct penalty weights (i.e., w = 0,0.01, 0.02,…,0.98,0.99,1). 
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argmin
θT,i

wΔ

(

θT,i,ΦT,i

)

+

(

1 − w

)
∑

S∈{S1,S2,S3,S4}

(

1 − CAL

(

Si, θT,i

))

min
{

θBL
L,i , θ

HPA
L,i , θNV

L,i , θWH
L,i

}
⩽ΦL,i

subject to max
{

θBL
L,i , θ

HPA
L,i , θNV

L,i , θ
WH
L,i

}
⩾ΦL,i

min
{

θBL
A,i, θHPA

A,i , θNV
A,i , θ

WH
A,i

}
⩽ΦA,i

max
{

θBL
A,i, θ

HPA
A,i , θNV

A,i , θ
WH
A,i

}
⩾ΦA,i

min
{

θBL
H,i, θ

HPA
H,i , θ

NV
H,i , θ

WH
H,i

}
⩽ΦH,i

max
{

θBL
H,i, θ

HPA
H,i , θNV

H,i , θWH
H,i

}
⩾ΦH,i

0 < θBL
L,i < θBL

A,i < θBL
H,i < 1

0 < θHPA
L,i < θHPA

A,i < θHPA
H,i < 1

0 < θNV
L,i < θNV

A,i < θNV
H,i < 1

0 < θWH
L,i < θWH

A,i < θWH
H,i < 1,

(4) 

where ΦT,i = (ΦL,i, ΦA,i ΦH,i)
′

and Δ(θT,i,ΦT,i) is the proportion of risk scores that change in transitioning from the group-agnostic to group-specific 
threshold values. 

B.4. Generating empirically derived trade-off continuum 

Lastly, in this section we present the step-by-step details for generating various fairness and predictive performance measures necessary for 
generating, among other things, the empirically derived trade-off continuum between accuracy and fairness. Ultimately, this amounts to iterating 
through each value of w and completing the following steps.  

1. Set number of subsamples, J (e.g., J = 200).  
2. Initialize the subsample index: j = 1.  
3. Obtain the jth random subsample of X, denoted by Xj.  
4. Calculate the extent to which Error Rate Balance is achieved for the jth subsample at the pre-fairness corrected low-risk threshold value, denoted 

ERB(ΦL,w,Xj), and at the post-fairness corrected low-risk threshold values, denoted 
ERB(θ̂L,w ,Xj). Additionally, perform the analogous calculations at the average-risk and high-risk thresholds.  

5. Calculate various performance measures for the jth subsample at the pre-fairness corrected low-risk threshold value, ΦL,w, and at the post-fairness 
corrected low-risk threshold values, θ̂L,w . These performance measures include the false negative rate, true positive rate, false positive rate, true 
negative rate, positive predictive value, false discovery rate, negative predictive value, false omission rate, and accuracy for each level of the 
protected attribute, as well as overall. Additionally, perform the analogous calculations at the average-risk and high-risk thresholds.  

6. Increase subsample index: j = j + 1. If j⩽J, repeat steps 3–5, else move on to step 7.  
7. Obtain the average and standard deviation of extent to which Error Rate Balance is achieved across the J subsamples at both the pre-fairness 

corrected value for the low-risk threshold and the post-fairness corrected values for the low-risk threshold. Obtain analogous measures for the 
average-risk and high-risk thresholds. These values are calculated as follows:  

• ERB
(

ΦL,w,X
)
= 1

J
∑J

j=1ERB
(
ΦL,w,Xj

)
.  

• ERB(ΦA,w,X) and ERB(ΦH,w,X) are analogously calculated.  
• SD(ERB(ΦL,w,X)) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

J− 1
∑J

j=1(ERB(ΦL,w,Xj) − ERB(ΦL,w,X))
2

√

.  

• SD(ERB(ΦA,w,X)) and SD(ERB(ΦH,w,X)) are analogously calculated.  

• ERB
(

θ̂L,w ,X
)
= 1

J
∑J

j=1ERB
(

θ̂L,w ,Xj

)
.  

• ERB(θ̂A,w ,X) and ERB(θ̂H,w ,X) are analogously calculated.  

• SD
(

ERB
(

θ̂L,w ,X
))

=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

J− 1
∑J

j=1(ERB(θ̂L,w ,Xj) − ERB(θ̂L,w ,X))
2

√

.  

• SD(ERB(θ̂A,w ,X)) and SD(ERB(θ̂H,w ,X)) are analogously calculated.  
8. Obtain the average and standard deviation for the various performance measures of Step 5 across the J subsamples. Such numerical summaries are 

calculated in an intuitive manner analogous to the calculations of Step 7. Similarly, the average difference, or change, in transitioning from the pre- 
to post-fairness corrected threshold values (post-fairness corrected value minus pre-fairness corrected value), as well as the corresponding standard 
deviation, are also calculated in an intuitive manner analogous to the calculations in Step 7. 

B.4.1. Visualizing variation across subsamples 
To help understand the value of the additional resampling procedure detailed in Appendix B.4, for the identified “best” post-fairness corrected 

threshold values, this procedure was run using 200 random subsamples (i.e., J = 200). The resulting increase in Error Rate Balance at each threshold, 
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in transitioning from the pre- to post-fairness corrected threshold values, for each of these 200 subsamples is plotted in Fig. 4. The vertical blue line in 
each plot of this figure corresponds to no change as a result of the procedure, while anything to the left of this line corresponds to decreased fairness 
and anything to the right corresponds to increased fairness. From this figure, it is evident that for the average- and high-risk thresholds, all 200 
subsamples result in a sizeable increase in fairness, whereas for the low-risk threshold, all but a few subsamples result in an improvement in fairness. 
However, from this plot, it is also evident that there is a non-marginal amount of variation in this improvement across subsamples, which must be 
accounted for when qualitatively and quantitatively assessing any improvement the procedure yields. Similar such plots and findings exists for 
alternative definitions of fairness and various predictive performance measures. 

While the Error Rate Balance provides an aggregate measure of the parity in false positive and false negative rates across all pairings of protected 
attribute levels, it may also be of interest to assess those respective constituent measures in isolation. The procedure detailed in Appendix B.4 
necessarily produces such values. For example, with the reunification algorithm, the average false negative and false positive rates, averaged across 
the same 200 random subsamples that yielded Fig. 4, for each level of the protected attribute at each threshold, for both the pre- and post-fairness 
corrected threshold values, are provided in Table 4. 

Table 4 
The average false negative rate (FNR) and false positive rate (FPR), for both the pre-fairness-corrected (Pre-FC) and post-fairness-corrected (Post-FC) threshold values, 
across 200 random subsamples.  

Threshold Protected Attribute Level FNR FPR 

Pre-FC Post-FC Pre-FC Post-FC 

Low-Risk BL 0.113 0.129 0.722 0.697 
Low-Risk HPA 0.151 0.116 0.532 0.611 
Low-Risk NV 0.105 0.117 0.680 0.640 
Low-Risk WH 0.131 0.128 0.634 0.642 

Average-Risk BL 0.352 0.383 0.340 0.294 
Average-Risk HPA 0.381 0.324 0.206 0.252 
Average-Risk NV 0.325 0.343 0.310 0.287 
Average-Risk WH 0.390 0.381 0.279 0.287 

High-Risk BL 0.706 0.755 0.057 0.047 
High-Risk HPA 0.756 0.690 0.034 0.047 
High-Risk NV 0.669 0.683 0.055 0.046 
High-Risk WH 0.769 0.771 0.051 0.050  

Fig. 4. The distribution of the increase in the extent to which Error Rate Balance is achieved, at each threshold for 200 random subsamples, in transitioning from the 
pre- to post-fairness corrected threshold values. The vertical blue line in each plot represents the point at which no change occurred as a result of the procedure, 
whereas anything to the left of this line corresponds to decreased fairness and anything to the right corresponds to increased fairness. 
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Appendix C. Demonstrating generalizability 

Given that a single definition of algorithmic fairness is unlikely to be agreed upon across all Child Welfare jurisdictions, either within common use 
cases (e.g., hotline screening) or across distinct use-cases, there is a benefit to definition-agnostic “correction” procedures. To that end, the developed 
procedure can be applied using any of the nine group-level definitions of algorithmic fairness. To demonstrate this generalizability, the procedure was 
separately applied to three other definitions - Conditional Use Accuracy Equality, Treatment Equality, and Calibration. 

C.1. Results under alternative definitions 

The same specifications that were utilized with Error Rate Balance are used in applying the fairness correction procedure across each of Conditional 
Use Accuracy Equality, Treatment Equality, and Calibration. In particular, the procedure detailed in Appendix B.2 was performed under each of these 
three alternative definitions, utilizing 200 random subsamples (i.e., I = 200) and a grid of 101 w-values ranging between zero and one (i.e., w = 0,
0.01,…,0.99,1). For each of these three definitions, for all 101 corresponding w-values, the procedure detailed in Appendix B.4 was then utilized to 
determine the extent to which the specified definition of fairness was achieved, on average, across 200 random subsamples (i.e., J = 200). For each of 
these three definitions, the “best” w-values across the three thresholds were then identified, where “best” corresponds to the post-fairness corrected 
threshold values yielding the greatest extent to which the specific definition of algorithmic fairness was achieved. Condensed results for each scenario 
are provided below to demonstrate the procedure’s impact on the specified definition of algorithmic fairness. 

C.1.1. Results under conditional use accuracy equality (CUAE) 
The “best” w-values in this scenario are w = 0.00,0.01,0.02 for the low-risk, average-risk, and high-risk thresholds respectively. The average 

number of risk scores that changed in transitioning from the pre- to post-fairness corrected threshold values was 10.70% (standard deviation of 
0.08%). For each threshold, the average change (post-fairness corrected minus pre-fairness corrected) in Conditional Use Accuracy Equality and in five 
common predictive performance measures as a result of transitioning from the pre- to post-fairness corrected threshold values is provided in Table 5, 
along with the corresponding standard deviations across the 200 random subsamples. From this table, two observations stand out. First, it is clear that 
the fairness-correction procedure has, at each threshold, meaningfully improved fairness with comparatively minimal cost to predictive performance. 
For example, at the low-risk threshold, the minimum parity in both the positive and negative predictive values between any two levels of the protected 
attribute (i.e., CUAE) has been increased, on average, by 0.111 (standard deviation of 0.019), with the cost of this improvement, on average, being no 
more than 0.045, in absolute value, to any of the overall predictive performance measures at that threshold. Importantly, the fairness at each threshold 
is not only improved, but notably good with an average Conditional Use Accuracy Equality of 0.95, 0.94, and 0.93 at the low-, average-, and high-risk 
thresholds, respectively. Second, even though the pre-fairness corrected risk scores are substantially fairer for CUAE than they are for Error Rate 
Balance, the correction procedure is still meaningfully able to increase the CUAE. In other words, the procedure was still able to substantively increase 
fairness even when the opportunity for improvement was comparatively less. 

C.1.2. Results under treatment equality (TE) 
The “best” w-values in this scenario are w = 0.84,0.74,0.90 for the low-risk, average-risk, and high-risk thresholds respectively. The average 

number of risk scores that changed in transitioning from the pre- to post-fairness corrected threshold values was 1.42% (standard deviation of 0.03%). 
For each threshold, the average change (post-fairness corrected minus pre-fairness corrected) in Treatment Equality and in five common predictive 
performance measures as a result of transitioning from the pre- to post-fairness corrected threshold values is provided in Table 6, along with the 
corresponding standard deviations across the 200 random subsamples. From this table, it appears that the fairness-correction procedure has, at each 

Table 5 
The average change (post-fairness corrected minus pre-fairness corrected), rounded to three decimal places, in Conditional Use Accuracy Equality (CUAE) and overall 
predictive performance measures at each threshold, along with corresponding standard deviations across 200 random subsamples. The predictive performance 
measures include Accuracy (ACC), False Negative Rate (FNR), False Positive Rate (FPR), Negative Predictive Value (NPV), and Positive Predictive Value (PPV).  

Measure Low-Risk Threshold Change Average-Risk Threshold Change High-Risk Threshold Change 
Mean SD Mean SD Mean SD 

CUAE 0.111 0.019 0.045 0.021 0.111 0.026 
ACC 0.033 0.001 0.013 0.001 0.000 < 0.0005 
FNR 0.023 0.002 0.020 0.002 0.027 0.002 
FPR − 0.045 0.001 − 0.020 0.001 − 0.006 < 0.0005 
NPV − 0.003 0.001 − 0.002 < 0.0005 − 0.004 < 0.0005 
PPV 0.009 < 0.0005 0.010 0.001 0.002 0.003  

Table 6 
The average change (post-fairness corrected minus pre-fairness corrected), rounded to three decimal places, in Treatment Equality (TE) and overall predictive per
formance measures at each threshold, along with corresponding standard deviations across 200 random subsamples. The predictive performance measures include 
Accuracy (ACC), False Negative Rate (FNR), False Positive Rate (FPR), Negative Predictive Value (NPV), and Positive Predictive Value (PPV).  

Measure Low-Risk Threshold Change Average-Risk Threshold Change High-Risk Threshold Change 
Mean SD Mean SD Mean SD 

TE 0.072 0.066 0.079 0.056 0.095 0.049 
ACC − 0.001 < 0.0005 − 0.002 < 0.0005 0.001 < 0.0005 
FNR 0.000 0.001 − 0.003 0.001 − 0.001 0.001 
FPR 0.001 < 0.0005 0.003 < 0.0005 − 0.000 < 0.0005 
NPV − 0.000 < 0.0005 0.000 < 0.0005 0.000 < 0.0005 
PPV − 0.000 < 0.0005 − 0.001 < 0.0005 0.003 0.001  
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threshold, marginally to meaningfully improved fairness with essentially no cost to predictive performance. For example, at the high-risk threshold, 
the minimum parity in the ratio of false positives to false negatives between any two levels of the protected attribute (i.e., TE) has been increased, on 
average, by 0.095 (standard deviation of 0.049), with the cost of this improvement, on average, being no more than 0.003, in absolute value, to any of 
the overall predictive performance measures at that threshold. Importantly, the fairness at each threshold is not only improved, but categorically good 
with an average Conditional Use Accuracy Equality of 0.86, 0.91, and 0.91 at the low-, average-, and high-risk thresholds, respectively. 

C.1.3. Results under calibration (CAL) 
The “best” w-values in this scenario were the same, w = 0.05, at all three thresholds since a single penalized optimization problem must be solved 

across all three thresholds simultaneously. The average number of risk scores that changed in transitioning from the pre- to post-fairness corrected 
threshold values was 5.57% (standard deviation of 0.05%). For each risk score, the average change (post-fairness corrected minus pre-fairness cor
rected) in Calibration as a result of transitioning from the pre- to post-fairness corrected threshold values is provided in Table 7, along with the 
corresponding standard deviations across the 200 random subsamples. Similarly, for each threshold, the average change (post-fairness corrected 
minus pre-fairness corrected) in five common predictive performance measures as a result of transitioning from the pre- to post-fairness corrected 
threshold values is provided in Table 8, along with the corresponding standard deviations across the 200 random subsamples. From these tables, two 
observations again stand out. First, the fairness-correction procedure has, at three of the fours risk scores, substantively improved fairness with 
comparatively minimal cost to predictive performance across the three thresholds. For example, at the S1 risk score, the minimum parity in the 
proportion of child-reunification pairs that ultimately return to substitute care between any two levels of the protected attribute (i.e., CAL) has been 
increased, on average, by 0.185 (standard deviation of 0.051); the cost of this improvement, on average, is no more than 0.042, in absolute value, to 
any of the overall predictive performance measures across all three thresholds. Importantly, the fairness of the risk scores is not only improved, but 
relatively good with an average Calibration of 0.71, 0.89, 0.93, and 0.84 across the four scores, respectively. Second, despite Calibration being subtly, 
but importantly, different in how it assesses fairness, the utilized correction procedure is still effective at increasing fairness according to this 
definition. 

C.2. Some final thoughts on generalizability 

While the demonstrated generalizability of the developed correction procedure does not preclude the complex and difficult conversations sur
rounding the choice of definition of algorithmic fairness, it does reveal a robust approach for increasing fairness once that decision has been made. 
Furthermore, although not demonstrated here due to small sample sizes, for larger jurisdictions the procedure is theoretically applicable across an 
arbitrary number of protected attributes and thresholds. Such functionality, among other things, enables the utilization of a multidimensional (e.g., 
race, gender, and disability status) protected attribute with a finely-grained risk scoring system. 

Appendix D. Child-transition features for machine learning classifier 

Table 9 lists the features available for each child-transition observation, constructed from administrative data. Features described with bracketed 
terms (e.g., # Days) represent multiple which vary over a set of options, such as the number of days into the past, or the type of allegation named in a 
report of abuse/neglect. These sets of options will vary between jurisdiction. Careful consideration must be made in selecting and defining appropriate 
features in order to ensure the features represent their intended constructs in a valid and reliable fashion. 

Table 8 
The average change (post-fairness corrected minus pre-fairness corrected), rounded to three decimal places, in overall predictive performance measures at each 
threshold, along with corresponding standard deviations across 200 random subsamples, after fairness correcting under Calibration (CAL). The predictive performance 
measures include Accuracy (ACC), False Negative Rate (FNR), False Positive Rate (FPR), Negative Predictive Value (NPV), and Positive Predictive Value (PPV).  

Measure Low-Risk Threshold Change Average-Risk Threshold Change High-Risk Threshold Change 
Mean SD Mean SD Mean SD 

ACC 0.032 0.001 − 0.000 < 0.0005 0.000 < 0.0005 
FNR 0.016 0.002 − 0.000 0.001 0.006 0.001 
FPR − 0.042 < 0.0005 0.000 < 0.0005 − 0.001 < 0.0005 
NPV − 0.001 0.001 − 0.000 < 0.0005 − 0.001 < 0.0005 
PPV 0.009 < 0.0005 − 0.000 < 0.0005 0.001 0.001  

Table 7 
The average change (post-fairness corrected minus pre-fairness corrected), rounded to three decimal places, in Calibration (CAL) at each Risk Score, along with 
corresponding standard deviations across 200 random subsamples.  

Measure Change in Risk Score S1 Change in Risk Score S2 Change in Risk Score S3 Change in Risk Score S4 
Mean SD Mean SD Mean SD Mean SD 

CAL 0.185 0.051 0.154 0.064 0.020 0.0271 0.021 0.006  
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